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f1 2 
2. Lattice" body centred cubic; (X2_~..~ 2 =0.65 +_0.1, 

- -  N 0 . 7 _ 0 . 1 .  

Hence the next neighbours (bricks) are placed along 
body diagonals. The fluctuation is less parallel to their 
mean coordination vector (20 XU) and greater at right 
angles to it (28 XU). (e<fl ,  see Fig.2). It is known, 
that in a spinel oxygen ions build up a close packed 
f.c.c, lattice; the small spaces at tetragonal and octa- 
hedral sites between these large anions are filled up by 
the small cations. In the manganese-rich spinels under 
consideration obviously the cations in octahedral posi- 
tions make 'bricks' with the surrounding oxygen ions 
and these molecular bricks themselves make up the 
crystalline lattice. 

In another paper* the results from these spinels are 
dealt with in detail. The aim of the present paper is to 
illustrate that information relevant to the co.acept of 
paracrystals is available from line profile analysis. 

* Cervinka, Hosemann & Vogel (1970). 

The authors wish to thank the Deutsche Forschungs- 
gemeinschaft and the Senat yon Berlin for supporting 
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ParaerystaUine Lattice Distortions and Mierodomains in Manganese Ferrites 

near the Cubie-to-Tetragonal Transition 
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The line profiles of X-ray reflexions from different Mn,~Fe3-,,O4 samples were investigated. Sample I 
(x= 1.66) is cubic with no anomalies; small paracrystalline distortions, g < 0.1%, cannot be excluded 
and are calculated to be of this magnitude from considerations of a simple volume effect of the larger 
Mn3+ ions. Samples II-IV (x= 1.88) show interesting effects which are closely connected with the 
development of the tetragonal structure, observed when x > 1"80. Sample II (quenched) shows para- 
crystalline distortions which can be quantitatively explained on the basis of the Jahn-Teller effect" 
the tetragonally deformed single Mn3+O~- octahedra are statistically oriented and statistically dis- 
tributed over B sites and have a mean tetragonality ~=0.014. In sample III (cooling rate 20°C.min -a) 
about 26% of the volume consists of microdomains which result from a correlation between the orien- 
tations and positions of Jahn-Teller octahedra; quantitative agreement with the theory can be obtained 
by introducing a correlation factor y = 2. In sample IV (cooling rate 7°C.min -x) this correlation pro- 
ceded in such a way that the crystal consisted of 74% tetragonal matrix which had already attained 
a value of e/a= 1.056, and about 22% of tetragonal microdomains oriented in two other directions 
with a value c/a < 1"056. In addition about 3 to 5% of a cubic phase is present. If the mean tetragonality 
of the microdomains is taken to be ~ = 0.020 the experiments correspond quantitatively with the theory. 
The detailed study of sample III proves that H+ ÷ ÷ are the paracrystalline coordination statistics with a 
fluctuation ~= 27 XU in the direction [111] and P= 38 XU perpendicular to it. This is explained by a 
model of the spinel structure having two kinds of blocks" a tetrahedral A-structure and Jahn-Teller 
affected octahedral subcubes at B sites; the separation distance is ¼g3a= 3.7/~. 

1. Introduction cubic lattice of the MnxFe3-xO4 system ((~ervinka, 
Krupi6ka & Syne6ek, 1961; Cervinka, 1965). This 

It has been proved that tetragonally distorted octa- can be explained quantum mechanically by Mn 3+ ions 
hedra of Mn3+O62- exist locally in the macroscopic in an octahedral environment of 0 2- anions. The eigen- 
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functions then lose their higher symmetry and the 
chemical binding forces in one direction (c axis) be- 
comes less than in the others; this is the effect pre- 
dicted by Jahn & Teller (1937). On increasing the con- 
centration of these manganese ions the number of 
Jahn-Teller Mn 3+ ions is also increased• At a certain 
concentration of these ions (x=1.8-1.9) the spinel 
structure changes from a cubic to a tetragonal lattice 
(Fig. 1). Such a transformation is explained by a co- 
operative interaction of these locally tetragonally dis- 
torted octahedra. At higher concentration of Mn 3+ 
ions this leads to a long range ordering process - the 
cubic-to-tetragonal transition (Wickham & Croft, 
1958; Wojtowicz, 1959). 

It is the aim of this paper to study in more detail 
the phenomena occurring at this transition in order 
to obtain more information on the role of the Jahn- 
Teller ions in the lattice. This is significant for other 
properties of spinels also, e.g.  the deviations from 
theoretical values of the Curie constant (Blasse, 1965), 
the anomalous behaviour of the crystallographic prop- 
erties of spinels with lithium (Rogers, Germann & 
Arnott, 1965), the anomalous variation of the low tem- 
perature lattice constant of manganese-rich manganese 
ferrites (t~ervinka & Vetterkind, 1968), and the tem- 
perature dependences of the Seebeck voltage and the 
electrical conductivity (Sim~a, 1967). 

All these anomalies have been qualitatively ex- 
plained by the formation of 'clusters' of Mn 3÷ ions in 
the octahedral sites of the spinel lattice. Furthermore 
it has been pointed out that spontaneous square hys- 
teresis loops in ferrites containing manganese could 
also be caused by 'clusters' of Mn 3+ ions acting as a 
sort of chemical inhomogeneity in the lattice (Gooden- 
ough, 1965). To obtain more qualitative data on the 
clusters and microdomains (see below) we study quan- 
titatively in this paper paracrystalline distortions of 
manganese-rich spinels. These distortions must occur 
if single Jahn-Teller ions, or clusters of them, or 
tetragonal microdomains exist within a cubic matrix. 
The mathematical background of the analysis of line 
widths by paracrystalline distortions is given in the 
preceding paper (Vogel & Hosemann, 1970). 

2. Some crystallographic aspects 

In Fig. 2 the ideal structure of a spinel below the 
transition point is given along an (110) netplane. A 
lattice cell (cell edge a =  8.53 A) contains 8 f.c.c, cells 
of 02.  anions, i.e. 32 anions (white balls). Within the 
8.53 A lattice cell there exist 8 tetrahedral cation posi- 
tions, the so called A sites (black squares) and 16 octa- 
hedral positions (black balls), the B sites. The ionic 
bonds are marked by lines connecting A and B site 
cations with anions. 

In Fig. 3 the 8.53 A lattice cell, shown by dotted 
lines, surrounds the 2-13 A subcubes in such a way that 
a three-dimensional chessboard-like structure arises. 
The spinel structure can now be clearly understood: 
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Fig. 1. Lattice parameters versus composition of MnzFe3-zO4 
at 20°C. A Finch, Sinha & Sinha (1967); [] McMurdie, 
Sullivan & Maurer 0950); O(~ervinka 0966); • Our 
measurements. 
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Fig.2. Spinel structure along the (110) netplane. O 02- ions; 
• octahedral (B)cation sites; • tetrahedral (A) cation 
sites. 
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one kind of subcube with 4 0  z- and 4 Mn 3+ ions at 
the corners builds up a diamond-like 8.53 A lattice 
cell. In the holes of this lattice another diamond-like 

( a , 0 , 0 )  whoseunits  lattice cell is built, displaced by 2 ' 

consist of one Me z+ cation of the centre, tetrahedrally 
surrounded by 4 O z- ions. More exactly these two 
lattices are of the ZnS type since the subcube at (000) 

(4°4) is not identical with that at 2[ - , but is inversely 

symmetric. The same holds for the A type lattice (cf. 

( 2 )  ( 4  a 3a )  F i g ' a ' u n "  the subcube at 0, 0, and ' 4 - '  4- " 

like Fig. 2, has the disadvantage that most of the lines 
do not represent ionic binding, but some details of the 
structure can be better understood by it. 

A study of the behaviour of MnzFe3-zO4 with varia- 
tion in x shows (Fig. 1) for 0 < x < 1 a remarkable in- 
crease of a with x (quasi linear). This can easily be 
explained by the fact that, firstly, all the tetrahedral 
sites are filled up with Mn 2÷ ions. Since their distance 
from the tetrahedral anions is ½1/3 times smaller than 
the distance of B site cations from the nearest anions 
and the radius of the Mn z+ ion is larger than that of 
the Fe 3+ ion (R=0.91 A against R=0.67 A) at x =  1, 

~ ~ / / / / / ' / / / / /  .... ---- 

Fig.3. The two kinds of brick of the paracrystalline b.c.c. 
lattice in MnxFe3-zO4 (schematic). • 02-; ~ A sites; 
O B sites. 

practically all A sites are filled up with Mn 2+ ions and 
for x > 1 the lattice constant increases more slowly with 
x (Fe 3+ has R=0.67 A, practically the same as for 
Mn3+). 

A more detailed study shows that for x <  1 not all 
Mn cations go to A sites, but only a fraction y, and 
the remainder, x - y ,  go as Mn 2+ to B sites (Gooden- 
ough, 1967): 

a+ Mn~+ 2+ 3+ 2+ (Fez-x Fel-y Fel+y Mnx_y) 
A sites B sites 

for 0 < y < x < l .  (1) 

On the other hand, according to Goodenough, for 
x 5  1 a fraction ( x -  1) of Mn cations go with a charge 
of three to B sites: 

3+ Mn}+ 3+ a+ a+ Fez_y (Fe2-x+y Mnx_0 Mn, _y 
A sites B sites 

for y <  1 < x < 2 .  (2) 

As a first approximation we described the phenomenon 
by 

y = x  if x <  1 
y = l  i f x > l  . 

As seen from Fig. 1, for x >  1.88 the tetragonal struc- 
ture exists with a c axis larger than the two a axes. 
Moreover, in Fig. 1 (aZc) U3 is plotted in the tetragonal 
region and it fits with the extrapolated variation of the 
cubic lattice cell for 1 < x < 2 .  This proves that the 
volume change after the tetragonal transition remains 
the same as before. Hence all Mn cations built in at 
x >  1.9 have the same charge (3+) as in the region 
1 < x < 2 (c f  equation 2). Hence in practically the whole 
range 1 < x < 3 only Mn 3+ ions are built in at B sites. 
The percentage, p, of available B sites, occupied by 
Mn 3+ is therefore given by 

x - 1  
. 1 0 0 % .  P =  2 

The p scale is also plotted in Fig. 1. 

3. Experiments and specimen preparation 

Two specimens with x =  1.66 and x =  1-88 were pre- 
pared by different methods: 
(a) The x =  1.66 sample 

The material was preheated to 900 °C in air and then 
pressed and sintered at 1230°C for 6 hours under an 
atmospheric pressure of about 2 mmHg and then 

Table 1. Specimen data 

Amount, p, 
Specimen Manganese of Mn3+ Cooling rate 
number content, x on B sites (°C.min-1) 

I 1.66 0.33 
II 1.88 0.44 Quenched 
III 1.88 0"44 20 
IV 1.88 0.44 7 

Lattice type 

Cubic 
Cubic 
Pseudocubic 
Pseudotetragonal 
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cooled slowly from 1200°C in argon under a pressure 
of about 10 mm Hg (specimen I in Table 1). 
(b) The x =  1.88 sample 

This sample was prepared by the Verneuil method 
at 1580°C and cooled slowly from approximately 
1200°C at a mean cooling rate of 20°C.min -1 (spe- 
cimen III in Table 1). 

Two specimens from this sample were then given a 
further treatment: 
Specimen II (Table 1): quenched from 900°C 

in water. 
Specimen IV (Table 1): slowly cooled from 900°C 

at a cooling rate of 7 °C.min-'. 
This treatment was carried out under atmospheric 
conditions. Because of the long cooling time specimen 
IV was oxidized so that it contained 3-5% 
~- (Fe ,  M n ) 2 0 3 .  

Measurements were carried out by use of a Guinier 
double cylinder camera, after Hofmann & Jagodzinski 
(1955) together with a focusing quartz crystal mono- 
chromator of the Johannson type.* Up to the 662 
reflexion Fe K~, radiation was used. A finest Mo-focus 
X-ray tube after Hosemann & Beitz* with a 
minimal line focus of 5/~ was used for high order re- 
flexions. The resolving power thus obtained was about 
I000 A for Mo radiation and about 1600 A for Fe 
radiation (with an accuracy of 10%). With a lower 
accuracy of 50 % the resolution reached values of 3000 
and 5000 A respectively. 

* Manufac tured  by AEG-Telefunken.  

Double coated Adox-Films were scraped off at the 
back after development care being taken to maintain 
the density S at less than S=0.8. 

4. Analysis'_,of l ine broaden ing~as  a J a h n - T e l l e r  e f f ec t  

Using the fundamental formula (15) of the preceding 
paper, 

1 
6b= ~ + 712g21h2h 3 dhlh2h3 b 2 

(3) 
1 AZxa h2 

- L +~z2 .... a - V -  ' 

one obtains, from a 6b-h  2 or Ob-b  2 plot, the relative 
paracrystalline distance fluctuations, ghln2n 3 of a family 
of netplanes hih2h3 of mean separation dhln2%, or the 
distance fluctuation Axa recalculated (normalized) rel- 
ative to the cell edge a, where 

h 2 2 2 . =h,  +h 2 +h] ,  (4) 

L is the weight-averaged size of the crystal normal to 
the netplanes, 6b the observed integral width of a re- 
flexion at b = 2 sin 0/2 or at h. 

Fig. 4 shows the Mo-transmission patterns of sample 
III compared with sample I (bottom), which show 
entirely sharp lines. The diffuse lines of the x =  1.88 
sample, which become much weaker with increasing b, 
cannot be explained by a Debye factor alone. 

In Fig. 5 the ~ b - h  plot of sample III is given: it 
shows the parabolic character of equation (3). In the 

I I I I I 
220 440 880 11"53 12"84 

975 

Fig.4. Top: transmission pattern of sample II I ,  Mo K0c2, 50 kV, 3 mA, 185 h; bottom: transmission pattern of sample I, Mo K=2, 
50 kV, 3 mA, 100 h. 

Table 2. Observed paracrystalline distortions along the body diagonal 

Sample 
I 
II 
III 
IV 

gx 11 Axa L 
(%) (xu) (A) ~* 

< 0" 1 < 7 > 6000 
0.33 +0.09 21 4000+ 1000 0"14+0"05 
0.47+0.07 31 1740+ 300 0.13 +0"03 
0-69 + 0"04 45 1700 + 300 0" 18 _+ 0"02 

Lattice 
direction 

<ooi> 
(011> 
< i l l>  

Table 3. Experimental results from sample III (pseudocubic) 

gn~ [hkl] ga Axa L 
(%) (%) (xu) (A) 

1.24+0.12 [004] 0-62-+0.06 5 3 + 6  1150+200 
0.91 -+ 0.06 [022] 0"54 + 0.03 46 + 4 1540 + 200 
0.47-+0.07 [111] 0.36+0-05 31 -+4 1740+300 

0"16_+0"03 
0"17_+0"03 
0.13_+0.03 
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& b - h  2 plot of Fig. 6 on the other hand, within ex- 
perimental error, linear functions can be used for all 
three samples II-IV. If the line broadening is ex- 
plained by microstrains, the 6 b - h  plot of Fig. 5 must 
be linearly interpolated. This, within the errors of ex- 
periment, is impossible and if done yields a negative 
interception with the ordinate, which is meaningless. 

¢ 
~b 

1 0 - -  

. . . .  4 _ _ - ¢ - #  . . . .  
' ' ' ' I ' ' t , 

5 

/ 
/ 
t i 

itli~ lit 
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/ / 

h -.--~ 

I I ' 
15 15 

Fig.5. Corrected integral width of sample III. Reflexions of 
all types are included. }x measurements with Fe K0q, 

i1 I 

measurements with Mo K~2. The reflexions at h= 1/48 = 6.9 
and h=1/75=8.6 have systematically smaller widths. This 
is explained in Fig. 7. 

H n x Fe3_  x 0 4 

x =  1 t 8 8  

I I I  

h 2 

I I | I i 

I11 222 333  ¢44 555 

Fig.6. Integral width, &b, of the hhh reflexions of samples 
II-IV versus h z. 

In Table 2 the values gnl for all samples and the nor- 
malized Axa-fluctuation are given,. The quantity ~* is 
explained below (see § 5). 

Our first result is that sample I appears to have 
practically no paracrystalline distortions and very large 
mosaic blocks, whilst the higher the number of the 
sample, the larger g11~ and the smaller L. The next 
result is that the observed paracrystalline distortions 
indicate that in samples II-IV the Jahn-Teller effect 
plays a predominant role. 

For spherical ions (radius R), the rate of change of 
the lattice constant a in the region x > 1 gives, accord- 
ing to Vegard's rule" 

da dR 
a =p  R ' (4) 

da is the change in the length of a cell edge a when 
the Fe 3+ ion in the one B site along the cell edge a 
(see Fig. 2) is replaced by a Mn 3+ ion. From Fig. 1 
and published measurements (Cervinka & Vetterkind, 
1968) values of a=8.515 and 8.527 • for p = 0  and 
0.44 respectively, give 

dR 0.012 1 
R - 8520 " 0-44 = 0 . 3 2 % .  (5) 

The g value along this direction is then (Hosemann, 
Bialas, SchSnfeld, Wilke & Weick, 1966) 

dR 
gl°°= R ~ / p ( l - p ) = 0 . 1 6 % ,  (6) 

and hence 

Axa=8"53 x 0"0016=0"013 A = 1 3  XU . (7) 

This value, within experimental error, may fit with 
sample I but is much too small compared with samples 
II-IV. 

As proved in the preceding paper (Vogel & Hose- 
mann, 1970), differences in the ghkl values for different 
netplanes can be produced by specially shaped coordi- 
nation statistics, for instance disc-like coordination 
statistics He in a primitive cubic lattice. Then Axa of 
[100] can be much smaller than that of [111]. Table 3, 
however, shows that in the direction [100] the distor- 
tions are still greater than in [111]. It is impossible 
that in the quenched sample II the Mn 3+ ions group 
together to form clusters; we will suppose for simpli- 
city that any such positional correlations are not im- 
portant. Then the discrepancies between the Axa values 
of Table 2 and equation (7) can only be explained by 
a structure of octahedra deformed by Mn 3+ ions on 
B sites. 

5. The paracrystalline lattice cell and 
coordination statistics 

The best data from which to determine the paracrys- 
talline lattice cell and coordination statistics are those 
from sample III, since in IV some of the reflexions of 
the h00 and hhO netplanes are so split or overlap to 
such an extent, that the results are disturbed. 

A C 2 6 A  - 8 
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Fig. 7 shows a plot of the observed widths 6b versus 
h 2. Three orders of one netplane could only be ob- 
tained for (hhh)- and (0hh)-type netplanes. Reflexions 
022, 044, 088 and 111,222 and 444 are well placed on 
a straight line; 555 is also included. Its width is a little 
disturbed by the overlapping with the comparatively 
weak 157 reflexions. Each slope leads by means of 
equation (3) to a Axe, value and these are applied to 
the log Axa v e r s u s  ~2(~27t-~2)-1 plot of Fig. 8. It is 
found directly, that the paracrystalline lattice cell 
must behave like a b.c.c, lattice with respect to the 
paracrystalline distortions. The best agreement within 
experimental error is found for the value 

flz -0 .65  . ~2 +f12 

Hence 

V = 1.36 (8) 
0.65 

~/~ = - ] "  0.6---5 

and we have fluctuations which are more sensitive to 
changes in direction than distance ('disc-like'). Out- 
side the limits of experimental error a solution exists 
which is drawn on the left hand side of Fig. 8: a prim- 
itive cubic-lattice cell with f l 2 ~ 2 ,  and hence rod-like 
coordination statistics H100, H010 > H001. 

In Table 3 the gnkz values according to equation (3) 
and calculated from Fig. 8 are given for the reflexions 
004, 022 and 111. In the fourth and fifth columns the 
g values and Axe values [el equation (3)] with respect 
to the conventional lattice constant a=8-53 A are 
given, showing that the smallest fluctuations are along 
the body diagonal. The sixth column gives the mean 
crystallite size in these directions. The value e* is ex- 
plained below. In Fig. 7 line widths are calculated for 
both cases (b.c.c. with flick= 1.36 and p.c. with fl/~~0). 
Here again it is clearly seen that only a b.c.c, lattice is 
possible. 

The question now arises: how long are the vectors 
of the coordination statistics along [111]? In another 

~ b  

7 

[,0w'] 

20 ~0 6O SC tOO t20 h 2 
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) oJ2 l o& oJ~ o~ ~ o~ s~s o& 
71 222 I75 

Fig.7. Integral width, Ob, versus hZ of sample III. A D ~7 observed values; O calculated for a p.c. lattice, rod-like statistics; 
[] calculated for a b.c.c, lattice, sphere-like statistics. 

pc 

i t̂t,~ 

• i 
bcc 

oo^ 

p2 

. . . . . . .  [ [ I . . . . . . . .  

02 0.,~ 0~ 08 tO 02 04 O.S Oa t,O 

f cc  

~ _  ooh o 
02 0¢ 06 0e S0 

Fig. 8. Relative roots of the slopes Axa (logarithmic scale) of the h00, hhO, hhh, reflexions in the 6b-h2 plot for different Bravais 

lattices as a function of the relative shape f12/(~2+f12) of the coordination statistics. O measured values of sample III. 
-. 
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paper (Hosemann, Lemm, Sch6nfeld & Wilke, 1967) 
a semi-empirical equation was discussed, which links 
the mean size L of a paracrystallite with its g value 
along the same direction: 

(9) 

This equation was derived on the basis that in a para- 
crystalline lattice the standard fluctuation of the nth 
netplane is given by A x n = l / n A x ;  A x = g d .  If this fluc- 
tuation reaches the order of magnitude of a netplane 
distance d, the paracrystal can no longer increase in 
size. The empirical factor of proportionality was called 
C ( * :  

dxn  = 1/n Ax  < ~*d. (9a) 

Hence equation (9). The quantity e* is given by 

IlL (10) o~* =g  d 

and can be calculated directly from the measurable 
quantities g, L and d. For  many different solids we 
found c~* ___0.15 (see Table 4). 

If for instance H m  are coordination statistics at a 
distance 2 =  l/3a from the origin, we obtain from 
Table 3 

Ax=31 x ~/3 =0.040 ~ ,  g=0.040/1/3 x 8.52=0.0027 

] /  1;700_ 
~* =0"0027 VV3 × 8"52 =0"029. 

This value is about four times too small. If the coor- 
1 

dination statistics are taken to be H+,~, g and i)~/both 

increase by a factor 1/4 and we obtain 

c~* ___ 0.12 . (11) 

Since the coordination statistic is found in this way to 
be H***, the physical significance of the model in 
Fig. 3 becomes apparent: the bricks of the spinel lattice 

a 
are~--subcubes, which touch each other at the points 

±!J_ If Mn 3+ ions are built in on B sites (white circles 4 4 4  • 

in Fig. 3), the paracrystalline distortion is an expan- 
sion in the direction of the cube diagonals. 

From the Axa value for [111] of Table 3 we calculate 
that the fluctuation of H~** in the direction [11 l] and 
length ¼1/3 is 

~=31 VI4 1/3 =20.4 XU. (12) 

The fluctuation perpendicular to it, assuming cylin- 
drical symmetry, is then, according to (8) 

f l=  1.36 x 20.4=28 X U .  (13) 

6. Jahn-Teller mierodomains 

According to Table 2, sample I and the quenched sam- 
ple II have small and almost no paracrystalline distor- 

Table 4. Equilibrium size and g values o f  the particles 

Samples 
Polyethylene ultra- 
fibers in hot stretched 
samples 

Lattice ae L ga 
direction (/~) (/~) (%) 
Normal 91 3.15 
to (110) 4.1 186 2.2 
plane 

Polyethylene mosaic 
blocks in single crystals 

Polyethylene mosaic- 
blocks in single crystals 
crystallized at higher 
temperatures 

0.15 
0.15 

Normal 
to (110) 4.1 332 2-14 0-19 
plane 

Normal 
to (110) 4.1 530 1.42 0.16 
plane 

A1203-promoted (001) 200 1.26 0" 11 
e-Fe catalyst annealed (011) 2.48 250 0.93 0-09 
400°C, 15 h (111) 320 0.97 0.11 

Al203-promoted (001) 430 0.85 
a-Fe catalyst annealed (011 ) 2.48 550 0.56 
800°C, 20 h (111) 550 0"54 

0"11 
0"08 

0"08 

Al203-promoted (001) 650 < 0.1 0-16 
a-Fe catalyst annealed (011 ) 2.48 710 < 0" 1 0" 17 
950°C, 10 h (111) 800 <0.1 0.18 

(001) 1150 0.62 0"15 
(011) 3.70 1540 0"54 0.16 
(111) 1740 0.36 0.12 

Mn-rich cubic 
manganese ferrite 

* Here ga is the relative fluctuation, reduced to the distance a 
ga = dx,/a . 

A C 2 6 A  - 8* 
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Fig.9. Transmission pattern of sample III, heavily over exposed. Weak tetragonal 'feet' to the left and right of the main cubic 
lines are visible. Fe K0q, 50 kV, 7 mA, 90 h. 

tions respectively. The line profiles are of the Lorent- 
zian type - 

1 
1 + ( ~ b P  " 

We are concerned with almost undistorted cubic lat- 
tices. The situation is quite different for sample III 
cooled at a medium rate (Table 1). Fig. 9 is a super- 
imposed X-ray-pattern, taken with Fe radiation. 

One observes continuous blackening 'feet' with 
sharp edges on both sides of the pseudo-cubic Bragg 
reflexions. As can be seen from Fig. 10 the 'foot' length 
is greatest for reflexions near h00 and least for those 
close to the [hhh] direction. From the position of the 
foot edges (arrows in Fig. 11) one can calculate the 
lattice constants of the largely tetragonal deformed lat- 
tice cells. All reflexions give the same ratio c/a= 1.056, 
which agrees with the measured ratio of the macro- 
scopic tetragonal (see again Fig. 11), slowly cooled 
specimen with x =  1.88 (see Fig. 1). Fig. 10 shows the 
good agreement between the values am,~x and amln cal- 
culated from the tetragonal structure and those cal- 
culated from the positions of the feet. Since these 
tetragonal feet also influence the integral widths of the 
reflexions, we measured only the half widths ~b1/2 
of the central peaks. For a given profile function, which 
we assume to be equal for all reflexions, integral widths 
Jb can be recalculated from the factor Jb : t~bl/2. This 
factor has been determined as 1.75 from the 444 re- 
flexion, which shows practically no tetragonal splitting 
and, hence no feet. The lines from the x = 1.66 sample 
are so sharp that their widths are practically equal to 
the collimation error; they are used for width correc- 
tion of the x =  1.88 sample by linear substraction of 
the width, since the line profiles of both samples were 
nearly Cauchy-type in character, f(b)=(l+k2b2) -I. 
Hence the widths of these profiles sum linearily (see 
the preceding paper). 

The positions of the arrows of Fig. 11 were found 
visually, since according to the Mach phenomenon, the 
human eye can differentiate a photometercurve. 

The central peaks in sample III prove that a cubic 
phase exists in addition to microdomains. Here no 
orientational correlation of the Jahn-Teller octahedra 
exists, or the domains are so small that their c/a values 
are nearly 1. We call the structure 'pseudo-cubic', 

since tetragonal microdomains are inbedded in a para- 
crystalline cubic matrix. 

We shall now attempt to obtain quantitative infor- 
mation about these microdomains. Fig. 11 shows the 
microdensitometer curves of the 220 reflexion from 
samples III and IV. Obviously both curves possess an 
additional asymmetric intensity contribution. More- 
over the curve of sample IV shows a weak hump be- 
tween the main tetragonal reflexions 220 and 202 022, 
which corresponds to a small amount of the cubic 
phase. In Fig. 11 the curves are arranged to bring the 
cubic lines into coincidence on a vertical line. 

(a) Sample III (pseudocubic) 
If the tetragonal microdomains show no size broad- 

ening their intensity should exactly represent the fre- 
quency distribution of their c/a values. Moreover, 
these values should not excede the value c/a = 1.056 of 
sample IV. Moreover, the foot intensity of sample III 
spreads far beyond the point represented by this value 
(arrows in Fig. 11). This means that the real c/a-fre- 
quency distribution must be considerably smeared out 
by a microdomain-size distribution of very small do- 
mains. 

We can therefore assume a relativly smooth pattern 
of microdomain intensity contributions, which will not 
affect the upper part of the central cubic peak. Accord- 
ing to the theory for J b £  1.5/L the central peak is 
closely represented by a Lorentzian profile produced 
by paracrystalline distortions. Now it is possible, by 
a simple geometric construction, to find the foot of 
the symmetrical central peak from the peak shape. 
The difference between this symmetrical part and the 
measured intensity has been included in Fig. 11. The 
proportion of the intensity below this curve, repre- 
sented by the microdomains, is 26 %. 

(b) Sample IV (pseudotetragonal) 
The reflexions of sample IV are divided according 

to the c/a value of the tetragonal phase. An additional 
contribution from microdomains with c/a< 1.056 is 
clearly visible in the overall profile (Fig. 11). More- 
over, as already mentioned, there a small residual cubic 
hump can be seen. Obviously, here the matrix is tetrag- 
onal with c/a= 1.056. In this matrix microdomains, 
having other orientations, are present on clusters of 
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Jahn-Teller octahedra. The larger these microdomains 
are, the more their c/a value differs from 1.056. Such 
structures are called 'pseudotetragonal'.  

In Fig. 12 the results of this section are illustrated 
schematically. The distribution of c/a values in the 
microdomains, which depends on the size distribution 
of these domains, is drawn as a step-function for con- 
venience. 

The separation of the three components, i.e. the con- 
tribution from the tetragonal matrix from that from 
the microdomains and the cubic phase can be simply 
achieved: the intensity difference between the tetrag- 
onal reflexions 220 and 202 022 has been reduced by 
the outer flanks of  these reflexions, which are not much 
disturbed by a microdomain contribution. From the 
radius of curvature of the cubic-lattice hump we get a 
rough value for the cubic contribution. Thus we ob- 
tain: 

Contribution of the 
tetragonal matrix 74 % 
tetragonal microdomains 23 % 
cubic phase 3-5 % 

7. Calculation of the paracrystalline distortion 

We now try to calculate the observed g values from 
the same assumptions: in a tetragonal matrix with 

c/a= 1 + e ,  (14) 

100p % of the B sites are occupied by Jahn-Teller octa- 
hedra with 

e /d= 1 +g (15) 

as the average value.* In a cubic matrix c=O and g lies 
between 0 and 0.056; in a tetragonal matrix e > 0 and 

* The c/a value of an individual Jahn-Teller octahedra is 
naturally greater. 

is smaller the larger the microdomain. For very large 
domains g can be negative, if the c axis of such a 
domain is perpendicular to the c axis of the matrix. 

In the first section of our calculation the B sites are 
randomly occupied by Mn 3+ ions and clusters result- 
ing from positional ordering do not occur. Domains 
of quite different sizes exist as a result of statistical 
fluctuation and their size distribution is given by a 
Boltzmann-statistic. The orientation of the c axes also 
is random, p/3 has a c axis parallel to the c axis of the 
incipient tetragonal matrix and 2p/3 perpendicular to it. 

Since according to Figs. 2 and 3 there is a B site 
every 8.53 A ( = a )  along each cell edge, we propose 
that ( 1 - p )  cell edges have length c in the direction 
[001] and a in the direction [010] and [100], p/3 cell 
edges have length g and 2p/3 the length 5 statistically 
distributed in three cubic directions. Then the cell edge 
statistic consists of three parts" 

Ho01 = (1 -p)Hm(x-c)  +~rP Ha(x-a) +½p Ha(x-g) 

Holo=Hloo (16) 

= ( 1 - p ) H m ( x - a )  +-}p Ha(x-a-)+½p Ha(x-g) .  

Hm(x) is the distance statistic of the matrix and Ha(x) 
that of the microdomains, which for convenience can 
be replaced by point functions 

P ( x - c ) ,  P ( x - a ) ,  P(x-a-),  P ( x - 5 ) .  

Since according to Fig. 1 the volume of the matrix 
does not change at the transition point, we have 

a3c = a2c = d2~. 

After substitution of (14) and (15) one obtains 

a d 
= 1 - ½ e + ~ 8 2  _ = l _ ½ ~ + ~ z  ac ac 

c -_ 1 + 3ze-}e 2 5 = 1 + ~ g - } e  2 . (17) 
ac ac 

Q 

8,8 

8,6 

8,4 

8,2 

A 

- t & 

113 222 004 
I I 

3 4 

C l m Q  x 

acubic 

amin 

A 

224 115 044 
I i 
5 6 h 

Fig. 10. Calculated line splitting for c/a=1"056 (lines), compared with the observed maximal splitting in Fig.7 (triangles) for 
different reflexions. 
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Now we get from (16) and (17) directly 

~0m = (1 - p ) c  +½p(2d +~) 

=ac[1 +~e(1 - p ) - ~ e  z ( l - p )  + p 9 ~2], 

.~o, = a~[1 + ~  ( 1 - p )  

+~[~(1 -p)'~- ~(l -p)] +~p ~1, 
Y¢2ooo~ = (1 - p)c z + ½p( 2d 2 + (z) 

=a~[1 +%(1 - p )  +~-(1 - p ) e  z + 4 p  g2], 

g 2001 = ~p[gZ + 2(1 - p)eZ]. (18) 

In a similar way one obtains 

x010 = xl00 = ac[1 - ½e (1 - p )  + z~e2(1 - p )  + p g2] 
9 

g21o=g2oo=~p[~2+½(l_p) ~2]. (19) 

As can be seen from these equations, there is a 
small expansion in the [100] [010] direction and a small 
compression in the [001] direction of the tetragonal 
matrix, which thus tends towards cubic symmetry. The 
change in the lattice parameters is in the order of 1% 
however, and therefore not much greater than the ac- 
curacy to which the equilibrium lattice parameters are 
known. 

For samples I, II and IV only the gill values have 
been measured (Table 2). The g~00 values necessary for 
comparison with equations (18) and (19) have been 
obtained by multiplying by the factor goo~/gHt = (½1.24)/ 
0.47= 1-32 of sample III (Table 3) and are plotted in 
Table 5. This implies that the fundamental coordina- 
tion statistics H÷&~ have not changed their shape in 
sample I, II or IV. 

Sample I (cubic) 

Since e=0 ,  equations (18) (19) are identical. In § 4 
we calculated gl00 by neglecting any Jahn-Teller effect, 

dR 
e.g. ~=0, but introducing the relative difference R of 

spherical ions. In equation (6) we obtained a value 
g~00, which within experimental error agrees with g111 

of Table 2 after multiplication by the factor 1.32. Now 
introducing the Jahn-Teller effect we obtain from 
equations (18) and (19) a further correction, 

g001 =gl00 = ½1/2P e ,  (20) 

which must be small enough compared with the ob- 
served value 0.13 % of Table 5. Hence 

~<0.05.  

In sample I wi thp=0 .33  (Table 1) such a small Jahn-  
Teller effect is possible. This agrees with the results of 
0ervinka (1965) who found anomalously large Debye 
factors which he explained by tetragonal deformation 
of individual single octahedra on B sites. 

Sample II (cubic) 

The observed gl00 value is so large compared with 
sample I, that the volume effect of equation (6) can be 

i 
i 

i 

Fig. 11. Line profiles of the reflexion 220 of samples III and IV 
brought to the same horizontal scale. The arrows indicate 
the end of the feet, visually observed (Mach phenomenon).  
They fit nicely with the lines of the tetragonal matrix of 
sample IV. 
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Fig. 12. Line profiles and distribution of c/a in the microdomains and matrices (schematic). An orientational correlation is proved 
by the experiments" a positional correlation cannot be excluded, but is unlikely. 
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Fig. 13. Two-dimensional models of  samples II-IV. S e e  T a b l e  6 for d e t a i l s .  

ignored. For e = 0  equations (17) and (19) degenerate 
to equation (20). For p=0.44 and gobs we obtain 
g=0.014. As mentioned above, this is a value averaged 
over a distribution ranging from g=0 (for very small 
microdomains) to g=0.056 (for very large microdo- 
mains). The mean tetragonality of the microdomains 
in the cubic sample II e=0.014, which is much smaller 
than the limiting value e=0.056. This is evidence for 
the smallness of the domains. More information can 
not be obtained from the X-ray pattern, since the re- 
flexions have a poor Lorentzian profile (Fig. 11). 

Sample III (pseudocubic) 
Within our simplified model we will make use of 

the ~ value of sample II for sample III. However, the 
observed microdomains must be taken into account. 
A rough attempt to do this is made by introducing 
the following simple assumption of correlation: all the 
distorted octahedra must occur in parallel oriented 
pairs, as in the undistorted case. Then all the above 
equations hold, if we put c---> 2c, a--> 2a, d--~ 26, 
~---> 2~, gioo-->gzoo. This means that we obtain the 
same g value for the second neighbours as for sample 

II. Then according to equation (9a) the gl00 value for 
first neighbours increases by the factor 1/2. 

As can be seen from Table 5 the observed value gl00 
now fits with the calculated one. The correlation factor 
?,, in this case 2, has the physical meaning that orienta- 
tional and positional correlations exist here between 
next-neighbour Mn 3+ ions (Fig. 13). The statistical 
domains of parallel oriented Mn 3÷ ions are now sys- 
tematically twice as large as in sample II. 

Another extreme explanation is given on the right 
hand side of Table 5. Instead of enlarging 7 by the 
factor 2 the mean tetragonality can be enlarged by the 
factor 1/2. Since with increasing 7, the mean tetrag- 
onality ~ also increases, the most probable solution is 
to be expected between the two limiting cases of Table 
5, for instance 

~ ~ 1 . 6 ;  g=0 .016 .  

The microdomains produced by the orientational and 
positional correlation determine the size of the feet of 
the reflexions (Figs. 11 and 12). As shown in {} 6a and 
Fig. 12, approximately 26 % of the B sites belong to 
such tetragonal microdomains. 
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Sample IV (pseudotetragonal) 
Since the e value of the matrix is not zero, because 

of equations (18) and (19), there exist different g values 
in different axial directions. Only one mean gl00 value 
is available from experiments. Therefore we must com- 
pare the mean g value of equations (18) and (19): 

1 2 3(g100 +go21o +g2m)=g2oo=Zp[~2 +(1 - p )  e2]. (22) 

Herefrom we obtain a g value of 1.39 % which is to 
high compared with that observed (Table 5). Taking 
into account that according to {} 6b and Fig. 12 only 
23 % of the B sites belong to the microdomains, i.e. 

p =0 .23 ,  (23) 

we obtain a g value g =  1.16 which is in better agree- 
ment with the observed value. 

8. Three models illustrating the eubic-tetragonal 
phase transition 

The models (Fig. 13) were constructed by means of 
dice: 1 and 0 points, no Mn3+-occupied octahedra; 3 
and 4 points, Mn3÷-occupied octahedra with the c axis 
horizontal; 5 and 6 points, M3÷-occupied octahedra 
with the c axis vertical. Hence p=~ in this two-dimen- 
sional structure. 

Sample II is represented by Fig. 13(a): no positional 
or orientational correlation. Nevertheless, statistically, 
microdomains exist up to 10 parallel-oriented Jahn-  
Teller ions. In Table 6 the distribution of the different 
B sites is given. 

In Fig. 13(b) the structure of Fig. 13(a) is changed 
as follows: 
Jahn-Teller-octahedra, which have . . . . . . . .  4, 3, 2, 
direct (100)-neighbours, change their orienta- 

tion if at least . . . . . . . . . . . . . . . . . . . . . . . . .  3, 2, 2, 
neighbours have another orientation. 

According to Table 6 168 octahedra now have a ver- 
tical orientation and build up much larger microdo- 
mains with orientational correlation. Since, according 

to Table 3, the paracrystalline lattices have average 
diameters of 1740 A, each microcrystal contains so 
many microdomains that a preferred orientation can 
not, as yet, be found. The lattice still remains pseudo- 
cubic. 

In Fig. 13(c) the structure of Fig. 13(b) is changed 
as follows: 
The c axis of Jahn-Teller-octahedra, which 

have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 3 2 1 
direct (100)-neighbours, change their ver- 

tical orientation, if at least . . . . . . . . . . . . .  3 2 2 1 
neighbours have a horizontal orientation, 

and change their horizontal orientation, 
if at least . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 2 1 1 

neighbours have a vertical orientation. 
(This process was repeated twice.) 

Here the transition to the vertical orientation is 
favoured since in Fig. 13(b) this orientation was pre- 
dominant outside statistical fluctuation (Table 6). The 
matrix now becomes tetragonal. Only relatively small 
domains of cross orientation exist, (in sample IV they 
exist to the extent of p=0 .23  [see equation (23)]. In 
Fig. 13(c) this proportion is large (p = 0.14). Apparently 
the stress in the matrix gives rise to a tetragonality 
~> 0, though their c axes are perpendicular. Only very 
large domains then have i < 0. In the calculation of the 
last model of Table 5 we found g=0.014~¼e. 
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It is shown that the concept of the molecular centre of libration in the description of the average rigid- 
body thermal behaviour of molecules is a useful approximation. A restriction is made on the full theory, 
making the centre of libration model a constrained version of the complete model. The relationship 
between the models is discussed. Some examples are chosen to demonstrate the closeness of the ap- 
proximation. These results show that for data reaching a reliability factor of no better than 7% an 
analysis using the full theory might yield a meaningless result. Some data of much higher accuracy 
does, however, show the need for the full theory. 

Introduction 

In a recent paper Schomaker & Trueblood (1968) show 
that the correct description of the average motion of 
rigid molecules in a crystal is furnished by a model 
with 20 parameters. These determine the mean-square 
translational and librational tensors T and L, each 
with six independent coefficients, and the screw rota- 
tion tensor S with eight independent coefficients. 
Throughout the present paper this will be called the 
TLS model. Before this theory was developed a model 
with 15 parameters had been used by Hirshfeld, Sand- 
ler & Schmidt (1963), Pawley (1963) and Cruickshank, 
Jones & Walker (1964). To the twelve coefficients of 
T and L were added three coordinates for the centre 
of molecular libration X. This will be called the TLX 
model. 

The TLX model has proved most successful, espe- 
cially when applied during structure factor least-squares 
(SFLS) refinement (Pawley, 1966). This procedure re- 
quires a constrained SFLS refinement, resulting in 
rigid-body parameters giving the best least-squares fit 
to the diffraction data. The alternative procedure is to 
perform the standard SFLS refinement, and then fit 
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the model to the independent atomic vibration tensors 
Ux thus found. The fit by this method cannot be the 
better; for anthracene the least-squares errors from 
this procedure were almost twice those obtained from 
the constrained SFLS refinement (Pawley, 1967). An- 
other constrained SFLS program is therefore called 
for to test the data available in the literature to find 
examples where the TLS model provides a significant 
improvement over the TLX model. First let us establish 
the relationship between the TLS a~nd the TLX models 
and find the transformation equations governing this 
relationship. 

The TLX and TLS models 

Let us examine the equations relating the Ux for the 
atom at the point x in a molecule to the three tensors 
T, L and S. These are given by Pawley (1968) equa- 
tions (3): 

(U,,)~ ~ = TI~ + L22x 2 + L33x 2 - 2L23x2x3 + 2521x3 - 253~x2 

(Ux)23 --= T23 -k-L31xlx2 + LI2X3Xl - L23x~-  LI l x2x3 

+ $33xl - $13x3 + $12x2 - $22xl • (1) 

We must now compare these with the equations relat- 
ing the U s to the two tensors T and L and the molecular 
centre of libration X. These can be obtained from the 


